
Umber Catalan 0.3.5 User Guide

Chapter 1 - Introduction
Catalan is a data transformation service that specializes in
processing input
data into arbitrary output formats. XML documents
control the conversion
process, listing step by step which
transformations to invoke, and how to arrange
content into a PDF
document.

Catalan acts as a bridge between XML and many different custom data
formats,
including ASCII text, HTML, JavaBeans, PDF, and even other
XML formats. The
Catalan Transform XML document drives the conversion
process, modifying the data
in small steps as it passes through the
chain of operations, until it emerges in
the final format. Catalan
provides a comprehensive toolkit of standard
operations, but also
makes it easy to plug in new operations at the client level.
 The
Catalan PDF engine provides a flexible layout and rendering system
able to
convert any XML format into PDF documents.

The Bellows library manages the low-level input data, providing tools
for
converting XML data into its native generic Datum objects, and for
accessing
nested Datum content through a query language similar to
XPath. Catalan makes
extensive use of the Bellows Traversal class and
NodeProcessor interface.

Chapter 2 - The Transformer
The Transformer class is the front end to all Catalan data processing.
Each
Transformer object holds a Transform XML specification which
declares a set of
transform operations to perform on input data. The
Transformer can run the data
through the entire set of its transforms
in order, or it can pick and choose
individual transforms by name.
This chapter describes how to invoke the
Transformer through Java
code, and also through the custom Ant Task.

Section 2.1 - Java Interface

The entire Transformer API consists of a constructor and three method
calls; most
of the work goes into creating the Transform XML documents
to drive the process.

public Transformer (Datum transform)

public List processAll (List nodes)

public List process (String[] ids, List nodes)

public String[] getProcessorIds ()

Page 1

The constructor accepts the Transform XML specification in Bellows
Datum format.
Your loading code might look something like this:

Reader reader = new FileReader ("transform.xml");

SAXLoader loader = new SAXLoader ();

Datum xml = loader.load (reader);

Transformer transformer = new Transformer (xml);

The Transform XML typically takes one of two forms: a self-contained
set of
operations meant to be run as a single unit, and a
non-sequential library of
operations that can be run in arbitrary
order. The first case uses the
processAll() method:

List input = getInputNodes (); // or whatever...

List results = transformer.processAll (input);

This sends the entire List of input data nodes through each transform
operation.
If the loaded Transform XML contained three operations,
the processAll() method
would send the entire List of input nodes
through the first transform, then send
the results of that transform
through the second transform, and finally send the
cumulative results
of the previous two transforms through the third operation.
The
Transformer then returns the fully processed node list from
processAll().

The other processing method takes a list of operation identifiers.
Each operation
will always have a unique id generated by the
Transformer, although the
identifier can be declared explicitly in the
Transform XML, with an 'id'
attribute on the operation. The
getProcessorIds() method returns an array of all
ids in the
Transformer. These ids can be used to select which operations to run

with the process() method. The example below runs the first three
operations,
then repeats the second operation twice:

// Assume at least three operations exist.

String[] ids = transformer.getProcessorIds ();

String[] ops = { ids[0], ids[1], ids[2], ids[1], ids[1] };

List input = getInputNodes (); // or whatever...

List results = transformer.process (ops, input);

The Transformer also provides a main() method to make it easier to
invoke it from
the command line. The main() method requires at least
two parameters. The first
parameter must be a valid Transform XML
document. The second and later

Page 2

parameters are all loaded into the
input node queue and run through the Transform
XML from the first
parameter.

The main() method currently only supports the processAll() method,
which means
any Transform XML specification it invokes will execute
all its transforms from
start to end, in order. Later versions might
support the process() method too.

The typical way to use the command-line Transformer is to store your
Transform
XML and any input data inside files (although Transformer
can also load content
across the network if you use URLs) and send the
changes to output files. When
main() finishes, any nodes still in the
queue will be noted in the log file then
discarded.

The following command will run the Transformer with the Transform XML
in the file
"transform.xml", then load the contents of the file
"input.txt", replace all
instances of the text "before" with "after",
and write the results to the file
"output.txt". We pass the three
file names as parameters, and let the Transform
XML load, manipulate,
and save the data.

java -cp $CLASSPATH org.writersforge.catalan.transform.Transformer

 transform.xml output.txt input.txt

The Transform XML to handle this might look something like the example
below.
We'll learn more about this XML format in the next chapter.

<transform>

 <group start="1">

 <import format="text"/>

 <replace newtext="after" oldtext="before"/>

 </group>

 <export/>

</transform>

Incidentally, since the <group> element processes all nodes after the
first, you
could add as many input files to the end of the command
line as you wanted. All
of them would be loaded, processed, appended
together, and written to the single
output file.

java -cp $CLASSPATH org.writersforge.catalan.transform.Transformer

 transform.xml output.txt input1.txt input2.txt ...

Section 2.2 - Ant Task

Page 3

Catalan supplies a simple Ant task wrapper around the Transformer
class. The
<catalan> task can only load text input data which you
specify in nested <input>
XML elements, although using the <import>
operation you can load more complex
data from files. The <catalan>
task only supports the Transformer.processAll()
method, so the
Transform XML you feed it will always execute from top to bottom,

ignoring any "id" parameters.

To use the <catalan> task in your Ant script, you must first declare
it with the
Ant <taskdef> task. It also depends on the Bellows and
Apache Commons Logging
libraries, so you must include those in the
<taskdef> classpath along with the
Catalan jar file:

<taskdef classname="org.writersforge.catalan.util.TransformTask" name="catalan">

 <classpath>

 <pathelement location="lib/commons-logging-1.0.2.jar"/>

 <pathelement location="lib/bellows-0.2.0.jar"/>

 <pathelement location="lib/catalan-0.1.0.jar"/>

 </classpath>

</taskdef>

Immediately after the <taskdef>, you can start using the <catalan>
task. The
"transform" attribute holds the path to the Transform XML
file. The following
example would load the contents of the file
"xml/my-xml2pdf.xml" as Transform XML
and perform all of its
operations in sequence on the two input data nodes,
"data/input.xml"
and "data/output.pdf". It is up to the Transform XML to invoke

<import> and <export> to load the input.xml file and save the
transformed results
to the output.pdf file.

<catalan transform="xml/my-xml2pdf.xml">

 <input>data/input.xml</input>

 <input>data/output.pdf</input>

</catalan>

Each <catalan> task may only include one Transform XML file, but can
hold an
unlimited number of <input> data nodes. The <input> elements
can only contain
regular text, and cannot be nested XML.

To make it easier to bulk process files, the <catalan> task supports
embedded
<fileset> elements, using the standard Ant syntax. Each file
it finds will be
converted into an <input> element. Thus, if the
"stuff" directory contains the
files file1.txt, file2.txt, file3.xml,
and file4.txt, the task invocation

Page 4

<catalan transform="xml/my-xml2pdf.xml">

 <input>data/input.xml</input>

 <fileset dir="stuff">

 <include name="*.txt"/>

 </fileset>

 <input>data/output.pdf</input>

</catalan>

is exactly equivalent to the task below. Only the files ending in
".txt" are
included. If any files are later added to the "stuff"
directory, they will
automatically be included the next time the task
is run, without requiring the
<catalan> task to be updated.

<catalan transform="xml/my-xml2pdf.xml">

 <input>data/input.xml</input>

 <input>stuff/file1.txt</input>

 <input>stuff/file2.txt</input>

 <input>stuff/file4.txt</input>

 <input>data/output.pdf</input>

</catalan>

Chapter 3 - The Transform XML Specification
The Transform XML specification is a high level set of Catalan
transformation
operations. Each operation has a unique XML element
name and a set of attributes
and child elements to customize its
behavior. This chapter examines the XML
content of each operation and
the resulting effects on the input data as it
passes through the
transform.

Section 3.1 - Format

The Transform XML document is always contained in a <transform> root
element.
Each transform operation is an immediate child of the
<transform> element, and
will receive a unique processor id.
Technically, not all operations have to
reside at the top level. As
we'll see later, the <group> operation embeds other
operations so they
can be called as a single unit.

Here's a sample transform that changes all occurrences of the String
"to" to the
String "from", then concatenates all input nodes into a
single long String.
We'll learn more about the syntax of these
operations in later sections.

Page 5

<transform>

 <replace id="op1" newtext="from" oldtext="to"/>

 <concat id="op2"/>

</transform>

The following code initializes a Transformer with the above Transform
XML
specification and runs some input data through it.

String xml = "<transform>" +

 "<replace id='op1' oldtext='to' newtext='from'/>" +

 "<concat id='op2'/>" +

 "</transform>";

Reader reader = new StringReader (xml);

SAXLoader loader = new SAXLoader ();

Datum spec = loader.load (reader);

Transformer transformer = new Transformer (spec);

// Load input data.

List input = new LinkedList ();

input.add ("to");

input.add ("button");

input.add ("away");

input.add (new Integer (123));

List results = transformer.processAll (input);

The <replace> transform will convert the input data into the nodes
"from",
"butfromn", "away", and the Integer 123 respectively. The
<concat> operation
append all of those into the String
"frombutfromnaway123", which becomes the
single List node in the
results variable.

If we wanted to skip the <replace> operation, we could use the
process() method
instead of processAll():

String[] ops = { "op2" };

List results = transformer.process (ops, input);

The results variable would instead contain the String
"tobuttonaway123".

Section 3.2 - Import and Export

The Transformer does not really care how the data content gets into
the input

Page 6

data queue. If you're initializing it directly with the
Java Transformer API,
you can take care of loading your data and
placing it into the List of input data
nodes however you like.

However, an easier approach is to let the Transformer do the work for
you.
Simply place the file name or a URL to the data content in the
queue and run the
<import> operation on it. You must specify a
'format' attribute to tell <import>
what data type it should try to
load the data into. A format of "text" loads the
contents into a
single String object; a format of "binary" loads the contents
into a
byte[] array object; and a format of "xml" loads the contents into a
Datum
tree.

<import format="text"/>

By default, the <import> operator will replace the file node with the
contents of
the loaded data. An optional boolean 'keep-orig'
parameter tells the operation
to keep the file node in the data queue.
Thus, given a file of "input.txt" with
the contents "Input is great!",
the plain import operator above would transform
the List of input data [
"input.txt"] into the List ["Input is great!"].
Conversely, the
operator below with the keep-orig parameter would result in the
data
queue of ["input.txt", "Input is great!"].

<import format="text" keep-orig="yes"/>

The final <import> attribute only affects the importing of XML data.
The
"keep-whitespace" attribute forces the XML loader to keep track of
all whitespace
in the original XML document. By default, <import>
only loads whitespace content
when it is in the same element as other
PCDATA content; whitespace indentation
and line feeds inside
element-only content are ignored. This extra whitespace
can
significantly bloat the resulting Datum tree, and the extra PCDATA
nodes can
displace any hardcoded element index references you have in
your Bellows query
paths. Thus, you should only import with strict
whitespace when you really need
to.

<import format="xml" keep-whitespace="yes"/>

When you are done with your transformations, you will probably want to
store the
results in a file somewhere. The <export> operation does
this for you. The
simple form below uses the first node as the output
file, and appends the
remaining nodes to the resulting file.

<export/>

Page 7

For example, with the input data ["output.txt", "line1
", "line2
",
"line3
"
], the <export> operator will save the contents
"line1
line2
line3
" to the
file "output.txt" and remove all four
nodes from the data queue. If the
'keep-orig' parameter is true, the
operator would keep all four nodes in the data
queue.

<export keep-orig="yes"/>

The export operator also lets you explicitly declare an output file in
the
Transform XML. In this case, the operator sends all data nodes to
the output
file, and does not consume the first node for a file name.
The output example
above would result in the file "output2.txt"
containing
"output.txtline1
line2
line3
" when processed with the
operator below:

<export file="output2.txt"/>

By default, each invocation of <export> will delete the previous
contents of the
target file. To append content to the end of an
existing file without
overwriting previous content, use the "append"
attribute:

<export append="yes"/>

Although the command-line processor only allows for String arguments
for the
input and output files, the import and export processors also
accept File, URL,
Reader/Writer, and InputStream/OutputStream objects
as well. If you are
constructing the input node list in Java code,
you can pass in whatever is most
convenient. For instance, the code
below would work the same as the first
"output.txt" example:

Writer writer = new FileWriter ("output.txt");

List input = new LinkedList ();

input.add (writer);

input.add ("line1
");

input.add ("line2
");

input.add ("line3
");

Section 3.3 - Groups

The <group> operator does not perform any special data processing of
its own, but
rather serves as a container for gathering collections of
operations together
into a single unit. Groups can be nested to
arbitrary depths. As simple
aggregators, <group> operators work on
all types of data content.

Page 8

<group>

 <replace newtext="new" oldtext="old"/>

 <group>

 <concat/>

 <normalize/>

 </group>

</group>

The <group> operator can also function as a node filter, for
operations that you
only want to affect certain nodes. The simplest
way of selecting nodes is by the
index position in the node list. You
specify a list of one or more indices to
process with the "range"
attribute. You can specify single nodes by giving their
zero-based
index number; you can specify a range by giving two index numbers with

a hyphen in the middle; and finally, you can join more than one index
or range by
commas.

To demonstrate how the "range" parameter affects the filtering, we'll
pass a set
of input data nodes through different <group> operations: [
"zero", "one", "two",
"three", 4, 5, "six"]. The node set is a
combination of String nodes (in
quotes) and Integer nodes (without
quotes).

In the first case, the range index is a 2. Nothing much happens,
since the "two"
is simploy concatenated to itself. The output nodes
are the same as the input
nodes.

<group range="2">

 <concat/>

</group>

The next case demonstrates an open-ended range, "2-". The selection
starts at
index two and continues to the last node. The <concat>
operator splices all
selected nodes into a single String. In this
case, the processed node set
becomes ["zero", "one", "twothree45six"
]. The <group> selected all but the
first two nodes.

<group range="2-">

 <concat/>

</group>

In the next case, we set the end index to 4. This selects all nodes
up to and
including the node at index 4. The processed node set
is ["zeroonetwothree4",
5, "six"].

Page 9

<group range="-4">

 <concat/>

</group>

By specifying both start and end, we can take a slice out of the
middle. This
example results in the node set ["zero", "one",
"twothree4", 5, "six"], after
selecting nodes 2 through 4.

<group range="2-4">

 <concat/>

</group>

Finally, you can pick and choose whichever nodes you want by
separating each
block with a comma. The range below selects nodes 1,
3, and 4. Notice that the
contents are inserted in place of the first
replaced node, leaving a gap between
nodes 2 and 5: ["zero",
"onethree4", "two", 5, "six"]

<group range="1,3-4">

 <concat/>

</group>

You can also filter nodes by which Java class or interface each node
implements.
Only nodes of the given class are affected. All nodes
that don't match the
filter are appended to the end, after processing.
The example below concatenates
all String nodes, and shuffles the two
Integer nodes to the end, leading to [
"zeroonetwothreesix", 4, 5].

<group class="java.lang.String">

 <concat/>

</group>

The <group> operator also supports regular expression filters with the
"regexp"
attribute. This filter compares a stringified copy of each
node to the
expression in the 'regexp' attribute. Like the "class"
filter, the "regexp"
filter shuffles unmatched nodes to the end of the
list. In this example, the
expression selects all nodes starting with
a "t" or a "4". Note that it finds
the Integer, 4. The results of
this operation are ["twothree4", "zero", "one",
5, "six"].

<group regexp="[t4].*">

 <concat/>

</group>

Page 10

Finally, you can combine all of the <group> parameters in the same
operation.
The start and end range is applied first, and the class
and regexp filters are
applied to each of the selected nodes. This
combination does result in some
behavior that might seem strange at
first, but does actually make sense. The
<group> operator places all
nodes rejected by the filter(s) at the end of the
selected index
range, not at the end of the entire node list. The nodes outside
the
range are not even considered by the filters.

In the example below, the nodes "zero" and "six" fall outside the
range, and thus
are not affected by any of the embedded operators (in
this case, <concat>).
Nodes 2 through 5 are sent through the class
and regexp filters. The class
filter rejects 4 and 5, and the regexp
filter rejects "one" and 5. It only takes
one rejection to reject a
node, so all three of those nodes are shuffled to the
end of the
selected range. The "two" and "three" nodes pass both filters, and

are concatenated together and placed at the beginning of the selected
range,
resulting in this processed node list: ["zero", "twothree",
"one", 4, 5, "six"]

<group class="java.lang.String" range="1-5" regexp="[t4].*">

 <concat/>

</group>

After the nodes are selected and processed, they must be inserted back
into the
output node list somehow. The default action is to insert
the processed nodes
into the output list at the lowest index of all
selected nodes. Thus, given the
the input list ["old0", "old1",
"old2", "old3", "old4", "old5"] and the text
replace operation which
renames all occurrences of "old" to "new":

<group range="1,3-4">

 <replace newtext="new" oldtext="old"/>

</group>

by default, the output list would be ["old0", "new1", "new3", "new4",
"old2",
"old5"]. The "old2" node, which falls in the middle of the
selection but is not
actually processed, is shuffled to the end,
immediately after the re-inserted
nodes.

The "action" attribute provides a means to change this default
behavior. The
default action is "insert". The operation below is
exactly the same as the
example above:

<group action="insert" range="1,3-4">

Page 11

 <replace newtext="new" oldtext="old"/>

</group>

The "append" action places the processed nodes at the end of the
output list; the
operation above with an append action would create
the output list of ["old0",
"old2", "old5", "new1", "new3", "new4"].
The "prepend" action would create an
output of ["new1", "new3",
"new4", "old0", "old2", "old5"].

If you don't care about the results of your processed nodes (perhaps
your
processors had some other side effect and you want to ignore
their result nodes),
you can use the "delete" action to replace the
processed nodes with nothing, for
example ["old0", "old2", "old5"].
If you want your original list back like it
was before the <group>
operation, regardless of which nodes you selected, you can
use the
"revert" action. A revert will insulate your node queue from any
changes
the <group> operation makes, even in other nested <group>
nodes.

Section 3.4 - Text Replacement

Transform XML supports two operations for simple text search and
replace:
<replace> and <lookup>. The <replace> transform Replaces all
occurrences in the
input data of the 'oldtext' attribute with the
value of the 'newtext' attribute.
The example below replaces all
hyphen characters with "X" characters. So input
data with three text
nodes ["a--ple", "------", "e-ample"] is transformed into
these
three output nodes: ["aXXple", "XXXXXX", "eXample"].

<replace newtext="X" oldtext="-"/>

The <replace> operation has an optional "count" attribute which limits
the number
of text replacements it makes per input node. The count
resets for each new
node. The example below would convert the input
data ["a--ple", "------",
"e-ample"] to ["aXXple", "XX----",
"eXample"].

<replace count="2" newtext="X" oldtext="-"/>

The <lookup> operation performs variable replacements in the style of
UNIX shell
script variables. By default, variables take the form of
"${variable}". The
extra markup is part of the variable, and is
removed when the variable is
replaced. For example, the text "The
${version} version of ${product}" would
become "The 0.1.3 version of
Catalan" when run through the transform below.

<lookup>

 <var name="product" text="Catalan"/>

Page 12

 <var name="version" text="0.1.3"/>

</lookup>

The optional "start-token" and "end-token" attributes can be used to
define
alternate markup for the variables. For example, the text "The
[version] version
of [product]" would become "The 0.1.3 version of
Catalan" when run through the
transform below.

<lookup end-token="]" start-token="[">

 <var name="product" text="Catalan"/>

 <var name="version" text="0.1.3"/>

</lookup>

Section 3.5 - Splitting and Joining

Transform XML also has transform operations for splitting apart and
joining
together text data nodes. The <tokenize> operation chops up
input data anywhere
it finds one of the given tokens. The example
below would convert the input data
["one,two::three;", ":four:"]
into ["one", "two", "three", "four"] by
splitting on all commas,
semicolons, and colons.

<tokenize>

 <token>,</token>

 <token>;</token>

 <token>:</token>

</tokenize>

The optional "include-delimiters" attribute tells the tokenizer to
include the
tokens in the output alongside the other data. The
example below would convert
the input data ["one,two::three;",
":four:"] into ["one", ",", "two", ":",
":", "three", ";", ":",
"four", ":"]. The tokenizer includes each token as a
separate output
data node, even when two or more of them appear consecutively.

<tokenize include-delimiters="yes">

 <token>,</token>

 <token>;</token>

 <token>:</token>

</tokenize>

The opposite transform to the tokenizer is the <concat> operation,
which combines
the specified input data nodes into a single String
output node. The
concatenator converts any non-String data into
String data with the

Page 13

String.valueOf() method before splicing it all
together. Thus, output from a
simple <concat> transform will always
be a single node with String data.

For example, given the mixed String, Integer, and Datum input data of
["one",
new Integer(2), <three/>, <four><five/></four>], the
transform below would
result in literal String output of [
"one2<three/>
<four>
 <five/>
</four>
"
]. The extra whitespace
is a by-product of the XML to String conversion.

<concat/>

The <concat> operator has an optional "count" attribute to limit the
number of
input nodes it affects. The concatenator converts input
data nodes into String
form until it reaches the specified node count
or runs out of input data. Any
unprocessed nodes are passed to the
output untouched. For example, given the
input data in the previous
example, the following example would create output of
[
"one2<three/>
", <four><five/></four>]. The first three input data
nodes are
concatenated and the fourth node (the second Datum tree) is
passed through as a
non-Stringified Datum tree.

<concat count="3"/>

The "separator" attribute is another optional <concat> property. The
separator
is inserted between all nodes during the concatenation
process. By default, the
separator is a blank string, and does not
affect the output. Given the operation

<concat separator="; "/>

and the input data ["one", "two", three"], the output data would be
a single
String node: "one; two; three". The separator is not
inserted at the head or
tail of the string, only in the middle.

Section 3.6 - Whitespace Normalization

The <normalize> operation converts all consecutive spans of whitespace
into
single space characters. By default, the space (" "), tab
("	"), and return
("
" and "") characters are considered to be
whitespace. The string " 		
white space
 " becomes " white space
".

<normalize/>

The normalizer also works with custom whitespace, resolving all spans
of custom
tokens into single custom output characters. If any <token>
elements are
defined, the default whitespace tokens no longer apply.
You can also change the

Page 14

token the whitespace resolves to, with the
"resolver" attribute. In the example
below, all consecutive spans of
space and tab characters will resolve to the '#'
character. Thus, the
string " 	 white space 	
 " would become
"#white#space#
#".

<normalize resolver="#">

 <token/>

 <token>	</token>

</normalize>

For even more sophisticated normalization, the normalizer offers
support for
custom exclusion areas, declared with <exclude> elements
inside the <normalize>
operator. Each exclusion area can be delimited
by the recurrence of a single
token, with the "delim" attribute, or
with different start and end tokens, using
the "start-delim" and
"end-delim" attributes.

The transform below looks for exclusion areas toggled on and off by
the "|"
character, and also exclusion areas that start with "[" and
end with "]".
Outside of the exclusion areas, it collapses all
consecutive spans of its lone
token character, "-", into single "X"
characters. Thus, it would convert the
text
"--one--|---two--|--three----[--four-five---]--six" into

"XoneX|---two--|XthreeX[--four-five---]Xsix".

<normalize resolver="X">

 <token>-</token>

 <exclude delim="|"/>

 <exclude end-delim="]" start-delim="["/>

</normalize>

Section 3.7 - Fixed-Length ASCII

To facilitate the parsing and creation of fixed-length ASCII or binary
data,
Transform XML offers the <to-ascii> and <from-ascii> operations.

The <to-ascii> processor packs simple Java objects into a packed ASCII
data
string according to the field specification implemented by the
AsciiFieldManager
helper class. It does its best to convert the input
data objects into the field
types in the spec. Any input data that
doesn't fit in the spec are passed
through, untouched. Input data too
long to fit into its field will be clipped,
which unfortunately may
result in data loss. No input data nodes are consumed
while
processing padding fields.

Page 15

The ASCII field specification is a series of field type and size
declarations.
Each field contains a mandatory numerical length and
type, and an optional array
count. The field length determines how
many ASCII characters of data correspond
to a single element of that
field data. The array count determines how many
consecutive element
fields exist in that slice of the ASCII data. Whitespace in
the field
spec is completely ignored.

The field type must be one of six categories:

Type Description Java Type

---- ----------- ---------

x padding N/A

b byte java.lang.Byte

c character java.lang.Character

i integer java.lang.Integer

s string java.lang.String

f float java.lang.Double

Non-array field specs are simply the field length and the type. Thus,
the field
spec "4s 3i" declares seven characters of ASCII data; the
first four characters
make up a String object and the final three
characters are converted into an
Integer object. Thus, the ASCII data
"1234567" would yield a String value of
"1234" and an Integer value of
567. This association works both ways, so
conversely a String field
of "nope" and an Integer of 34 would pack into ASCII
data "nope34 ".

Array field specs provide an easy way to load large chunks of
uniformly sized
data fields into a single Java array object. To
declare an array spec, append
the array size to the field's spec,
surrounded by square brackets. For example,
a field spec of "2s
2i[4]" declares one two-character String and four
two-character
Integer objects. With this field spec, the ASCII data "0123456789"

would unpack into a String of "01" and an Integer[] array of [23, 45,
67, 89].

The <to-ascii> operator looks for this field spec in the "spec"
attribute. For
example, given the input data [12345, "one", "two",
"three", "four"], the
processor and field spec below would result in
output data of ["1234 onetwothr
 ", "four"]. The default padding for
'x' fields is the space character; the
"four" node does not fit into
the field spec, so it is just passed through to the
output.

<to-ascii spec="4i 2x 3s[3] 3x"/>

Page 16

The optional padding attribute lets you change the default padding.
The padding
string is repeated across all padding fields. Given the
input data from the
previous example, the transform below would
produce output data of [
"1234ABonetwothrCDA", "four"].

<to-ascii padding="ABCD" spec="4i 2x 3s[3] 3x"/>

The <from-ascii> operator goes the opposite direction, exploding one
or more
ASCII fragments into Java Objects and arrays. The operator
processes each input
node separately, applying the entire field spec
to each node. For example, given
the input data [
"1234--onetwothrxxx"] and the transform below, the output data
would
be [1234, ["one", "two", "thr"]]. The padding "--" and "xxx" are

completely ignored when going from ASCII to Object. Thus, the input
data [
"1234..onetwothrABC"] would result in exactly the same output
data.

<from-ascii spec="4i 2x 3s[3] 3x"/>

Section 3.8 - Objects and XML

Transform XML provides two operations for converting between Datum XML
trees and
raw Java objects: <build-xml> for transforming objects into a
Datum tree, and
<explode-xml> for splitting a Datum tree into Java
objects.

The <build-xml> processor channels input data nodes into an XML
structure, based
on a push/pop stack of formatting directives. The
<start-element/> element pulls
the next input data node, converts it
to a string, and uses that as the element
name. The <end-element/>
directive closes the current element. It's possible to
nest elements
to arbitrary depths. The <attribute/> element pulls the next two

input nodes, using the first for the attribute name and the second for
the
attribute value. Finally, the <pcdata/> element appends the
current input node
to the PCDATA content of the current element.

<build-xml>

 <start-element/>

 <pcdata/>

 <attribute/>

 <attribute/>

 <end-element/>

</build-xml>

Given the transform above, the input data ["one", "two", "three",
"four",
"five", "six"] processed by the below transform would create
a Datum tree

Page 17

corresponding to the XML:

<one five="six" three="four">two</one>

The <pcdata> directive grabs the "two" node for element content, and
each of the
<attribute> directives grab a pair of input nodes. If the
input data contains
more nodes than the <build-xml> transform uses, the
extra nodes will be copied
directly to the output, after the Datum
tree.

By default, the <build-xml> transform pulls all of its non-markup content
from
the input data nodes. However, it is possible to override that
content with
static text inside the transform. The element name can
be set with the 'name'
attribute; the attribute content can be set
with the 'name' and 'value'
attributes; and PCDATA content can be set
by simply including it as PCDATA in the
<pcdata> element. Statically
set values do not consume input data. For example:

<build-xml>

 <start-element name="staticroot"/>

 <pcdata/>

 <attribute name="attr1"/>

 <attribute name="attr2" value="staticval"/>

 <pcdata>--</pcdata>

 <pcdata/>

 <end-element/>

</build-xml>

Input data of ["one", "two", "three", "four", "five", "six"]
processed with the
above transform would result in the XML content

<staticroot attr1="two" attr2="staticval">one--three</staticroot>

followed by output data of ["four", "five", "six"]. The unused
input nodes are
passed straight through to the output.

The <explode-xml> processor performs the inverse operation and decomposes
Datum
XML trees into component Java objects. The <query> child
elements select which
parts of the XML document to operate on; each
<explode-xml> processor can contain
more than one query, and queries can
be nested inside of each other. Nested
queries act upon the set of
Datum objects selected by the parent query, with a
relative path.

Inside the query, commands select the content to place in the output.
The
<property> command looks up the named XML attribute in all
selected elements.

Page 18

The <type> command places the current element name
in the output. The <datum>
command copies the Datum object itself
into the output. The <int>, <string>, and
<float> commands place
static data nodes into the output. Those commands result
in Integer,
String, and Double objects, respectively.

<explode-xml>

 <query path="root/child">

 <property name="prop1"/>

 <property name="prop2"/>

 <int value="1"/>

 <string value="two"/>

 <float value="3.3"/>

 <query path="child/*[@use=yes]">

 <type/>

 <property name="id"/>

 </query>

 </query>

 <query path="root/child[2]">

 <datum/>

 </query>

</explode-xml>

Section 3.9 - JavaBeans and XML

Another helpful feature of Transform XML is the ease at which it
translates
between live object data in JavaBeans and Datum XML
content. It provides many
high level style hints for generating
various styles of XML. The mapping between
XML and JavaBean is fairly
direct and clean, and does not match the Java XML
Peristence
specification used by Jdk1.4's XMLEncoder class and Bellow's

BeanLoader and BeanUnloader classes.

The <xml-to-bean> operation maps an XML document into a JavaBean
instance. It
consumes two input nodes: the JavaBean class, as either
a String or a Class
instance; and a Datum tree. The converter will do
its best to recursively load
the XML data into the JavaBean, matching
element and attribute names to JavaBean
properties. It supports many
different naming styles for both elements and
attributes, e.g.,
"my-bean", "my_bean", "MY-BEAN", "MY_BEAN", "MyBean", and
"myBean".
It initially looks for primitive JavaBean properties as child element

PCDATA content. If the property does not exist as a child element,
the operator
will search for the same property as an attribute of the
parent element.

Page 19

<xml-to-bean/>

The loader will ignore all content that does not map to JavaBean
properties.
Because of this, as long as the property names don't
overlap, the same XML
document can polymorphically be loaded into more
than one type of JavaBean
instance.

Conversely, the <bean-to-xml> operator generates an XML Datum tree
from a
JavaBean instance, converting JavaBean properties into
XML-style element names,
e.g., "my-bean", "my-bean-property". By
default, it creates all properties as
nested child elements.

<bean-to-xml/>

The optional "collapse" attribute tells the <bean-to-xml> operator to
store all
of its primitive JavaBean properties as attributes instead
of elements. It Still
creates child elements for complex properties
like nested JavaBeans. Thus, when
the "collapse" attribute is absent
or set to "false", all JavaBean properties
will be stored in child
elements; if "collapse" is set to "true", the XML will
contain a mix
of attributes and elements.

<bean-to-xml collapse="true"/>

By default, the <bean-to-xml> operator converts JavaBean property
names from the
form "myBeanProperty" to hyphen-separated lowercase
element and attribute names,
e.g., "my-bean-property". The optional
"naming-style" changes this naming style
to use alternate conventions.
The examples below represent the styles "my-bean",
"my-bean",
"my_bean", "MY-BEAN", "MY_BEAN", "MyBean", and "myBean", respectively.

<bean-to-xml naming-style="default"/>

<bean-to-xml naming-style="lower-hyphen"/>

<bean-to-xml naming-style="lower-underscore"/>

<bean-to-xml naming-style="upper-hyphen"/>

<bean-to-xml naming-style="upper-underscore"/>

<bean-to-xml naming-style="case-delim"/>

<bean-to-xml naming-style="javabean"/>

Section 3.10 - Converting Text to XML

One of the disadvantages to using XSLT is that you can only use it on
XML
documents. Catalan addresses this issue by keeping the processing
architecture
and API agnostic to the type of input and output data it
will allow. It's up to

Page 20

the processor in each transform stage to
decide which objects to place back in
the queue. This flexibility
makes it possible to create operators which can
convert between XML
and other data types. In this section we will discuss an
easy way to
convert text a document with simple formatting constraints into a

full-fledged XML document.

The official text-to-XML conversion operator is <text-to-xml>. It
uses a simple
XML specification to divide the text content into easily
accessible parts. The
operator has one optional "convert" parameter
which determines whether or not to
convert XML data into Datum
content. The "convert" parameter defaults to "no",
which loads XML
content in your source ASCII document as PCDATA content.

<text-to-xml/>

<text-to-xml convert="yes"/>

The operator breaks the text document into chapters and sections
according to
single-line titles with different underline characters in
the following line.
The "~" underline should only appear at the top
of the document, and denotes the
top-level <document> title; the "="
character declares the beginning of a
<chapter> element; and the "-"
underline character declares a new <section>. The
text of the title
is stored in a "title" attribute of its corresponding XML
element.
The titles can be flush left, indented, or centered, but must be

surrounded by blank lines.

Free-flowing text must always be aligned to the far left, i.e., not
indented.
Java, XML, and other example text should all be indented at
least one space. The
example below shows how the operator works.
(Note that since this user guide is
itself processed by <text-to-xml>,
the title examples must be "protected" from
XML-izing, by prefixing
each line of the sample text document with a "|"
character.)

INPUT:

| Document Title

| ~~~~~~~~~~~~~~

|

| Chapter Title

| =============

|

| This is the intro.

|

| Section 1 Title

Page 21

| ---------------

|

| This is line one of the first paragraph.

| This is line two of the first paragraph.

|

| This is example text.

|

| This is the second paragraph.

|

| <root>

| <child/>

| <child/>

| </root>

|

| Section 2 Title

| ---------------

|

| This is the second section.

OUTPUT:

<document title="Document Title">

 <chapter title="Chapter Title">

 <section>

 <text>This is the intro.</text>

 </section>

 <section title="Section 1 Title">

 <text>This is line one of the first paragraph.

 This is line two of the first paragraph.</text>

 <example>This is example text.</example>

 <text>This is the second paragraph.</text>

 <xml>

 <root>

 <child/>

 <child/>

 </root>

 </xml>

 </section>

 <section title="Section 2 Title">

 <text>This is the second section.</text>

 </section>

Page 22

 </chapter>

</document>

The "convert" parameter will determine whether the contents of any
generated
<xml> elements are loaded as String data in a PCDATA node,
or as a Datum tree
inside the <xml> node.

Section 3.11 - HTML Markup

HTML is very similar to XML, and because of this, any HTML viewer will
fail to
display elements it does not support. If your viewable HTML
data includes any
XML content, you must alter the XML markup so the
HTML viewer will recognize it
as data, not markup. This typically
amounts to converting content like this:

<root>

 <child/>

</root>

by expanding all "<" characters into the special literal XML entity
"<", like
this:

<root>

 <child/>

</root>

The content no longer looks like HTML elements, so the HTML viewer
will display
it. The <xml-to-html> operator performs this for you.
If the input data is a
String, it will perform a text search/replace
on all "<" characters and return
the result.

<xml-to-html/>

If the input data is a PCDATA Datum node, it will change the PCDATA
contents of
the Datum node and return the same Datum node. If the
input data is a Datum
tree, but the root node is not PCDATA, the
operator will convert the tree into
String data, run the
search/replace on it, then pack it into a new PCDATA node.
This helps
keep the data type consistent: If the input data is a String, the

output will be a String; if the input data is a Datum, the output will
be a
Datum.

As a pure convenience, Transform XML has another operator for
prettying up java
code with HTML markup. It marks up Java identifiers
in bold dark blue, string
literals and char data in red, numbers in
blue, and comments in green. It works

Page 23

on String data and directly on
PCDATA Datum nodes.

<java-to-html/>

Section 3.12 - XML Manipulation

In addition to a JavaBean-XML mapping, Transform XML provides an
extensive set of
operations for XML-XML mappings, for in-place
modifications of Datum XML content.
 All of these operators use the
prefix "xform" in their operator name:

<xform-insert/>

<xform-delete/>

<xform-copy/>

<xform-move/>

<xform-rename/>

<xform-wrap/>

<xform-inline/>

<xform-to-element/>

<xform-to-attribute/>

<xform-style/>

The first five operators perform simple structural changes, without
modifying the
data content itself. They can alter the location or
name of both elements and
attributes, and can make additional copies
of existing content.

The <xform-insert> operator evaluates the Bellows query in the
"select" attribute
(or defaults to the current node if "select" is
omitted), then creates a copy of
its static inlined element content
for each of the matched query nodes in the
target XML document. The
example below would place a copy of the full
<newContent> element,
including any attributes, into all <child> elements
immediately inside
the base <root> element of the input tree. As with all xform

processors, all non-Datum content is passed through to the output
untouched.

<xform-insert select="root/child">

 <newContent>

 <subContent1/>

 <subContent2 prop="value"/>

 </newContent>

</xform-insert>

The insert operation can also serve as a templating mechanism when its
"expand"
attribute is set to "yes" or "true". In this case, the
processor will

Page 24

recursively search the static insert contents for
variables of the format
"${query}" in PCDATA (not in attributes).
Wherever it finds an expandable query,
it will run the query against
the current root node of the input XML document --
not the selected
target nodes -- and insert a copy of that data in place of the
query.

For example, assume the query "root/data/stuff" results in two empty
<stuff/>
elements. The insert operation

<xform-insert expand="yes" select="root/child">

 <newContent>${root/data/stuff}</newContent>

</xform-insert>

would place the XML content below into each target <child> node:

<newContent>

 <stuff/>

 <stuff/>

</newContent>

The expandable queries can be nested as deeply in the static content
as you like;
the processor will resolve all of them it finds.

The insert operator can also insert attribute content by specifying
the name of
the attribute to create in the "attribute" attribute and
the attribute contents
in the "value" attribute. The transform will
create static attributes in all
matched query nodes. This example
would create a 'newProp' attribute with the
value of 'newValue' on all
selected <child> elements.

<xform-insert attribute="newProp" select="root/child" value="newValue"/>

The <xform-delete> operator completely removes all selected elements
or
attributes from the XML document. When given with just a "select"
attribute, it
will delete element contents. This example removes all
<child> elements inside
the <root> element.

<xform-delete select="root/child"/>

With an additional "attribute" attribute, the transform deletes the
named
attribute from all selected elements. The transform below
removes the 'origProp'
attribute from all selected <child> elements.

<xform-delete attribute="origProp" select="root/child"/>

Page 25

The <xform-copy> operator creates a new copy of the selected elements
or
attributes at each element that the 'dest' query selects. This
example would
make copies of all selected <child> elements and put
them into each selected <to>
element. If more than one destination
node is selected, the processor will make
multiple copies of the same
source elements. The transform does not alter the
original content,
e.g., the 'root/child' nodes below.

<xform-copy dest="root/to" select="root/child"/>

To copy attributes instead of elements, simply add an "attribute"
attribute. If
more than one attribute is copied into the same
destination node, the second and
later attributes are mangled to keep
the attribute names unique, by appending
numbers to the duplicated
attributes. Thus, if the example below matches three
'origProp'
attributes in the selected <child> elements, the processor will create

the attributes 'origProp', 'origProp2', and 'origProp3' in each
destination
element.

<xform-copy attribute="origProp" dest="root/to" select="root/from/child"/>

The <xform-move> operator moves element or attribute content to other
parts of
the XML tree. It behaves exactly like the copy processor,
except it deletes all
the source nodes. If the destination selects
more than one node, the source
nodes will be copied separately to each
destination node.

<xform-move dest="root/to" select="root/from/child"/>

As with the other structural operators, add the "attribute" attribute
to affect
attributes instead of elements. In this case, the move
operator will move
attributes to other elements in the XML tree. It
behaves exactly like the
attributes copy processor, except it deletes
all the source attributes. If the
destination selects more than one
attribute, the attributes will be copied
separately to each
destination node, with any necessary attribute name mangling.

<xform-move attribute="origProp" dest="root/to" select="root/from/child"/>

The copy and move operations both append their content to the end of
any
pre-existing content in the target elements. The "position"
attribute provides a
mechanism to place the copied or moved content
into the beginning or middle of
the target elements. All new content
is wedged into the child array at the
specified position. Thus, given
a copy operation that selects two <child> nodes,
and a destination
<to> node that looks like this:

<to>

Page 26

 <old0/>

 <old1/>

 <old2/>

</to>

and the following copy operation with a position index of 1:

<xform-copy dest="root/to" position="1" select="root/child"/>

the resulting <to> node would look like this:

<to>

 <old0/>

 <child/>

 <child/>

 <old1/>

 <old2/>

</to>

The <xform-rename> operator renames all selected elements to the new
name. The
example below would rename all selected <child> elements to
<newChild>.

<xform-rename new-name="newChild" select="root/child"/>

Adding "attribute" causes the operation to rename attributes in all
selected
elements. The example below would rename all 'oldProp'
attributes in the
selected <child> elements to 'newProp'.

<xform-rename attribute="oldProp" new-name="newProp" select="root/child"/>

The <xform-wrap> operator is a specialized combination of the insert
and move
operations that wraps the selected elements with a newly
created wrapper element.
 In the example below, the processor would
place all selected <child> elements
into <child-wrap> elements,
without losing their place in the <root> element.
Thus, after the
transform, the same <child> elements could be selected with a
query of
'root/child-wrap/child'.

<xform-wrap select="root/child" wrapper="child-wrap"/>

In the example below, the transform wraps each immediate <child>
descendent of
<root>, but ignores the unselected <other> node, and the
nested <child> node.

INPUT:

Page 27

<root>

 <child/>

 <child/>

 <other/>

 <child>

 <child/>

 </child>

</root>

OUTPUT:

<root>

 <child-wrap>

 <child/>

 </child-wrap>

 <child-wrap>

 <child/>

 </child-wrap>

 <other/>

 <child-wrap>

 <child>

 <child/>

 </child>

 </child-wrap>

</root>

The <xform-inline> operation performs the reverse of the wrap
operation. It
decreases element nesting, removing all selected
elements without deleting the
child content of those elements.
Essentially, this is a non-recursive delete.
All inlined content is
inserted in place; if an inlined element has more than one
child, all
children will be inserted into the parent where the former inlined

element was. This may offset the index counts of later elements. All
attributes
in the inlined elements are lost. Thus, the following
transform would convert
the input data into the sample output data
below:

<xform-inline select="root/child"/>

INPUT:

<root>

 <child>

 <grandchild1/>

Page 28

 <grandchild2/>

 </child>

 <other/>

 <child>

 <grandchild3/>

 </child>

</root>

OUTPUT:

<root>

 <grandchild1/>

 <grandchild2/>

 <other/>

 <grandchild3/>

</root>

The <xform-to-element> operation converts selected attributes into
PCDATA
elements. For each of the selected nodes, the processor will
move the requested
attribute into a child element, placing the content
into PCDATA inside the
element. In the example below, an element
"<child prop='value'/>" would become

"<child><prop>value</prop></child>". Elements without the attribute
will not be
altered.

<xform-to-element attribute="prop" select="root/child"/>

The optional "new-name" attribute can specify an element name other
than the
attribute name. The version of the transform below would
result in
"<child><myprop>value</myprop></child>" when run against the
example above:

<xform-to-element attribute="prop" new-name="myprop" select="root/child"/>

The <xform-to-element> operation also supports the "position"
attribute in the
same manner as <xform-copy> and <xform-move>.

The <xform-to-attribute> operation is not an exact inverse of the
to-element
operation. The to-element operator maps exactly one
attribute to exactly one
element, whereas the to-attribute operator
maps potentially more than one element
to a single parent attribute,
depending on how many child elements it finds in
any given parent
element. It extracts all PCDATA from all selected elements and

appends it together into a single string, then assigns it to the named
attribute.
 The entire content of all nodes becomes one attribute, and
any attributes in the

Page 29

selected nodes are lost. The transform below
demonstrates this.

<xform-to-attribute attribute="prop" select="root/child"/>

INPUT:

<root>

 <child child-prop="child-prop-value">CHILD1</child>

 <notChild>NOT-CHILD</notChild>

 <child>CHILD2</child>

</root>

OUTPUT:

<root prop="CHILD1CHILD2">

 <notChild>NOT-CHILD</notChild>

</root>

The final xform operator, <xform-style>, recursively converts the
selected
elements and all their attributes into the requested naming
style. It uses the
same styles as the <bean-to-xml> transform above.
An optional select parameter
specifies which branches to convert; if
the select query is omitted, the
processor will convert the entire
tree. The style operator is the only xform
operator with an optional
"select" attribute.

This transform will convert the style for all "root/child" elements
and
attributes and all their children into the JavaBean naming
convention, regardless
of what naming style they had before.

<xform-style new-style="javabean" select="root/child"/>

In addition to the styles supported by the <bean-to-xml> operator, the

<xform-style> operator also responds to the styles "collapsed" and
"expanded".
These two new styles correspond to the <bean-to-xml>
"collapse" attribute. The
"collapsed" style will recursively convert
all elements which contain only PCDATA
into attributes of the same
name in the parent element. Elements which contain
other element
content will not be converted.

<xform-style new-style="collapsed" select="root/child"/>

The "expanded" style performs the reverse, recursively converting the
attributes
of all selected nodes into PCDATA elements.

<xform-style new-style="expanded" select="root/child"/>

Page 30

Section 3.13 - Auto-Numbering

Auto-numbering is another convenience feature in Transform XML. The
<xform-tag>
operation recursively counts and assigns section numbers
to selected elements in
a Datum tree. Embedded <path> elements
select each level of numbering with any
legal Bellows query.

The example below works on the root <document> node, numbering each
<chapter>
element, then separately numbering all <section> elements
inside each selected
<chapter>, prepended with the parent chapter's
number. By default, the tag is
stored in a "number" attribute on each
tagged element, and the nested numbers are
delimited by a "."
character.

<xform-tag select="document">

 <path>document/chapter</path>

 <path>chapter/section</path>

</xform-tag>

The example above would perform the following transformation:

INPUT:

<document>

 <chapter>

 <section/>

 </chapter>

 <chapter>

 <section/>

 <section/>

 <section/>

 </chapter>

</document>

OUTPUT:

<document>

 <chapter number="1">

 <section number="1.1"/>

 </chapter>

 <chapter number="2">

 <section number="2.1"/>

Page 31

 <section number="2.2"/>

 <section number="2.3"/>

 </chapter>

</document>

The <xform-tag> lets you override the name of the generated attribute,
the index
delimiter, and the number to start counting at:

<xform-tag attribute="sectnum" select="root/document" separator="-" start-index="2">

 <path>document/chapter</path>

 <path>chapter/section</path>

</xform-tag>

This alternate example would produce the output below when run against
the same
input data:

OUTPUT:

<document>

 <chapter sectnum="2">

 <section sectnum="2-1"/>

 </chapter>

 <chapter sectnum="3">

 <section sectnum="3-1"/>

 <section sectnum="3-2"/>

 <section sectnum="3-3"/>

 </chapter>

</document>

Section 3.14 - Selecting XML Nodes

The <xml-select> operator is a container similar to the <group>
operator, except
that it runs its embedded operations on elements
inside a Datum tree. For each
input Datum node, it runs the Bellows
query in the optional "select" attribute
(defaulting to the entire
tree if the "select" attribute is absent) to determine
which XML
content it should process. It than passes the selected Datum content

to each of its embedded operators.

Like the <group> operator, <xml-select> operators can be nested to
arbitrary
depths. The "select" attribute always acts on the nodes
selected from the parent
operator. Because of this, the select
statements of nested operators will seem
to overlap a bit.

Page 32

In the example below, the outer <xml-select> operator passes each of
its <child>
sub-elements to its two nested operators: the first
<xform-rename> operator, and
the inner <xml-select> operator. The
inner <xml-select> runs the
"child/grandchild" query separately on
each <child> element, and passes each
<grandchild> to the second
<xform-rename> operator. This makes it possible to
iterate through an
XML tree, performing different operations on different
branches of the
XML content.

<xml-select select="root/child">

 <xform-rename new-name="new-child"/>

 <xml-select select="child/grandchild">

 <xform-rename new-name="new-grandchild"/>

 </xml-select>

</xml-select>

Section 3.15 - Velocity Template Processing

To facilitate code generation and more generic templating, Catalan
provides an
easy to use wrapper around the Jakarta Velocity template
engine. The <velocity>
operation is flexible about which parameters
should be statically defined and
which should come from the input
queue. This includes the template itself, as
well as the parameters
fed to it. In general, if a parameter is defined in
<velocity>, that
value will be used, but if it's missing, the processor will pull
it
from the input queue as needed.

The simplest form uses a Velocity template declared inside the
operation and a
single key value, "node". See the official Jakarta
Velocity docs for a full
description of how the templates work.

<velocity>

 <template>($node)</template>

 <key name="node"/>

</velocity>

This operation will send each input node through the template, passing
the node
to the Velocity engine as the template parameter "$node".
Velocity will then
resolve all the variable references inside the
template that it can, and pass the
results to the output. For
example, given the input node list ["one", "two"],
the template
above would create an output list of ["(one)", "(two)"].

The <velocity> operation will pull as many input data nodes as it
needs to fill

Page 33

in the missing key values. If the template had two
keys, it would use up two
input nodes for each template pass.

<velocity>

 <template>($node1 $node2)</template>

 <key name="node1"/>

 <key name="node2"/>

</velocity>

If the input list ["one", "two"] was passed through the operation
above, the op
would only produce a single output node, ["(one two)"
]. A list of ["one",
"two", "three", "four"] would produce an
output of ["(one two)", "(three four)"
]. The op requires a value
for every key/value pair. If it doesn't have enough
input nodes to
fully load all keys, it will fill in the missing nodes with
blanks.
Thus, the input list ["one", "two", "three"] would produce an output
of
["(one two)", "(three)"].

It's also possible to pull the Velocity template from the input
queue. To do
this, simply leave off the <template> element. The
<velocity> operation will
grab the first node in the input queue and
use that as the template. It will use
the same template for more than
one pass, if there are enough input nodes.

<velocity>

 <key name="node1"/>

 <key name="node2"/>

</velocity>

Given this, the input queue of ["($node1 $node2)", "one", "two",
"three", "four"
] would load the template from the first node, and
iterate twice over the value
pairs in the rest of the queue, giving an
output of ["(one two)", "(three four)"
].

You can also pass key names in through the input list. The op below
would
consume three input nodes per pass. The first goes to the node1
value, the
second to the second key name, and the third to the second
key value.

<velocity>

 <key name="node1"/>

 <key/>

</velocity>

With this template, an input of ["($node1 $xxx)", "one", "xxx",
"two"] will

Page 34

result in an output of ["(one two)"]. This is
particularly useful for
dynamically generated templates.

The <key> parameters are freshly pulled from the input list each time
the
template is run. However, sometimes it is useful to set key
parameters once, and
share them across all template passes. The
<global> element does this, acting
just like a <key> except it is only
assigned once, when the <velocity> operation
is initially loaded.

<velocity>

 <template>($global $local)</template>

 <global name="global"/>

 <key name="local"/>

</velocity>

Given the op above, the first input node goes to the $global key, and
the rest go
to the $local key, one node per template pass. The input
list ["one", "two",
"three"] would result in an output list of [
"(one two)", "(one three)"], with
the node "one" reused each pass as
the $global parameter. When the <template>
element is not specified,
the <velocity> operation will always grab that first,
followed by any
<global> parameters, leaving the rest for template iterations.

The <velocity> operation also has special support for handling XML
documents. By
default, a Bellows Datum XML object passed to the op
will behave like a normal
Java object which you can invoke methods on
inside the template, just like any
Velocity parameter. However, this
does not make it easy, or even possible, to
use the Bellows query
engine. Also, if you are generating Java source code from
an XML
source document, there is often no way to convert XML content into
valid
Java identifiers, especially when hyphens are present.

Catalan provides the DatumAdapter wrapper class to make all of this
easier. If
you set the "wrap-datum" attribute to "true" or "yes", the
<velocity> op will
wrap every Datum it finds in a DatumAdapter object,
even those returned by
Bellows queries.

<velocity wrap-datum="yes">

 <key name="xmlroot"/>

</velocity>

In general, the DatumAdapter provides a more Velocity-friendly API for
each Datum
XML node. You can always get a reference to the original
Datum object with the
getRoot() method.

Page 35

public Datum getRoot ()

For example, consider the XML document below loaded by the previous
<velocity>
operation:

<my-root id="the-root">

 <child id="child1"/>

 <child id="child2"/>

 <child id="child3"/>

</my-root>

When the XML content is loaded as a Datum tree and passed to the
template, it can
be accessed through the "$xmlroot" parameter. The
Velocity template
"$xmlroot.getRoot().getType()" would resolve to the
root element's name,
"my-root". Furthermore, Velocity allows
parameterless JavaBean property
accessors to be expressed in a
shorthand form, as just the property name. Thus,
the template above
could also be expressed as "$xmlroot.Root.Type".

You can call other methods against the raw Datum object from the
template. For
example, this template resolves to "the-root":

$xmlroot.Root.getProperty("id")

Unfortunately, when you grab a Datum attribute value directly, it
comes in
whatever format it occurs in the XML document. The root
element above is
"my-root". If you wanted to use that to generate a
Java identifier, for example
a class name, the source code would not
compile because the hyphen is not a valid
character for an identifier.
You would end up with a class of "my-root", not the
legal hyphenless
"MyRoot" form.

DatumAdapter makes use of the Bellows helper class, PropertyName, for
easy
translations between various property naming styles.
PropertyName supports the
API below; the getPropertyName() method
returns the original property name and
the other methods return the
same property name in alternate formats. See the
Bellows API
documentation for more info.

public String getPropertyName ()

public String getCaseDelimitedName ()

public String getBeanPropertyName ()

public String getLowerHyphenatedName ()

public String getLowerUnderscoredName ()

public String getUpperHyphenatedName ()

Page 36

public String getUpperUnderscoredName ()

The DatumAdapter wrapper offers alternatives to the Datum.getType()
and
Datum.getProperty() methods which each wrap the normal return
value in a
PropertyName object:

public PropertyName getType ()

public PropertyName getProperty (String property)

To solve the earlier class naming problem, you might use a template of

"$xmlroot.Type.CaseDelimitedName". This would return the "my-root"
element name
as a PropertyName object, which you could then convert to
"MyRoot" with
getCaseDelimitedName(). If you wanted to express it as
a constant field,
"MY_ROOT", you could use a template of
"$xmlroot.Type.UpperUnderscoredName".

The DatumAdapter also gives you some convenience methods for
extracting PCDATA
content from a Datum node:

public String getPcdata ()

public String getPcdata (boolean collapseWhiteSpace)

public String getSafePcdata ()

The first getPcdata() method grabs all PCDATA from the current element
and any of
its children, leaving all whitespace intact. This is just
a wrapper around the
DatumBrowser.extractPcdata() method in Bellows.
The second getPcdata() method
allows you to specify whether you want
the whitespace collapsed or not.

The final method, getSafePcdata(), returns a quotable version of the
PCDATA,
suitable for including in quoted strings in Java. It strips
out all line breaks
and extra whitespace and escapes all raw quote (")
characters with backslashes.
For example, this template assigns the
PCDATA content to the Java reference
"text":

String text = "$xmlroot.SafePcdata";

If the non-safe PCDATA accessor was used, the following XML would
result in an
uncompilable Java class:

<my-root>This text

 is multiline

 with unescaped " characters</my-root>

The generated content would look like this, an obvious error:

Page 37

String text = "This text

 is multiline

 with unescaped " characters";

The getSafePcdata() version looks like this instead:

String text = "This text is multiline with unescaped " characters";

Another critical Bellows feature that DatumAdapter wraps is the
Bellows query
engine. This lets you select and filter XML data inside
a Bellows tree with a
simple text query string. For example, the
query "root/child" would select all
<child> elements who are immediate
children of the top-level <root> element. The
query
"root/child[@id=child1]" would select only those <child> elements that
have
an "id" attribute set to the value "child1".

The query() method in DatumAdapter runs a query against the wrapped
Datum object
and returns the results. Those results are also wrapped
in DatumAdapter objects
so you don't lose the extra wrapper
functionality for queried nodes.

public DatumAdapter[] query (String query)

DatumAdapter provides two other convenience query methods to make
templating with
XML content even easier. The queryPcdata() method
runs a query, then extracts
the PCDATA from each returned node. The
queryProperties() method runs a query
then looks up the requested
attribute on each returned Datum object, wrapped
inside a PropertyName
object.

public String[] queryPcdata (String query)

public PropertyName[] queryProperties (String query, String attribute)

To demonstrate the simplicity of templating from XML content, consider
the
following example.

<my-root name="the-root">

 <child name="child-prop1"/>

 <child name="child-prop2"/>

 <child name="child-prop3"/>

</my-root>

Suppose we wanted to create JavaBean accessor methods for each child
element. We
could run the query "my-root/child" to get an array of the
<child> elements, then
use the #foreach Velocity command to iterate
through them, creating a chunk of
code for each one. Assuming the XML
content was sitting in the input node as a

Page 38

Datum tree, we could invoke
<velocity> like this:

<velocity wrap-datum="yes">

 <key name="xmlroot"/>

</velocity>

The template for the entire Java class file might look like this:

public class $xmlroot.Type.CaseDelimitedName

{

#foreach ($child in $xmlroot.query("my-root/child"))

 private String _$child.getProperty("id").BeanPropertyName;

#end

#foreach ($child in $xmlroot.query("my-root/child"))

#set ($prop = $child.getProperty("id"))

 public String get$prop.CaseDelimitedName ()

 {

 return _$prop.BeanPropertyName;

 }

public void set$prop.CaseDelimitedName (String $prop.BeanPropertyName)

{

 _$prop.BeanPropertyName = $prop.BeanPropertyName;

}

#end

The generated Java source would look like this:

public class MyRoot

{

 private String _childProp1;

 private String _childProp2;

 private String _childProp3;

public String getChildProp1 ()

{

 return _childProp1;

}

public void setChildProp1 (String childProp1)

{

Page 39

 _childProp1 = childProp1;

}

public String getChildProp2 ()

{

 return _childProp2;

}

public void setChildProp2 (String childProp2)

{

 _childProp2 = childProp2;

}

public String getChildProp3 ()

{

 return _childProp3;

}

public void setChildProp3 (String childProp3)

{

 _childProp3 = childProp3;

}

Section 3.16 - SQL Parsing

Catalan offers a simple custom operation <sql-bean> for converting SQL

declarations into Java objects. Currently only "CREATE TABLE" SQL is
supported.
Sending DDL through <sql-bean> will result in one instance
of an SqlTable object
for each TABLE in the DDL. The SqlTable object
lets you extract fields, SQL
types, Java types, key fields, and more,
through a simple JavaBean API. See the
Catalan SqlTable API
documentation for more details.

<sql-bean/>

By default, the <sql-bean> operation returns the basic Java types as
Object
wrappers (e.g., Integer, Float). If you want it to convert SQL
types into
primitive types whenever possible (e.g., int, float), call
it with the
"use-primitives" attribute set to "yes" or "true":

<sql-bean use-primitives="yes"/>

The SqlTable object is particularly useful in combination with the
Velocity
processor, for converting DDLs into other formats like XML or
Java source code.

Page 40

Section 3.17 - PDF Generation

XML content residing in the data processing pipeline can be organized
and
converted into a PDF file using the <pdfgen> operation. It
attempts to convert
Datum trees into a binary PDF file in the form of
a byte[] array. The
specification for mapping XML to PDF is rather
complicated, and is the sole topic
of the final two chapters in this
manual.

The basic format of the <pdfgen> operation is:

<pdfgen>

 <layout>

 <style-map/>

 <region-map/>

 <document/>

 </layout>

</pdfgen>

See later chapters for details on how to populate this operation.

Section 3.18 - Debugging

Although the <debug> operator does not affect the nodes it processes
in any way,
it exhibits a useful side effect that may end up saving
you many hours of
fiddling with a debugger. The <debug> operator
sends stringified versions of
each node it hits to the logger (which
might be stdout, log4j, or the Jdk1.4
logger, among others).

In its simplest form, <debug> logs each node to the "debug" channel:

<debug/>

The "log-level" attribute lets you specify a different logging
channel; this
attribute can have the values: "trace", "debug", "info",
"warn", "error", and
"fatal". The exact behavior of each channel will
depend on which logging backend
you are using.

<debug log-level="info"/>

To distinguish between multiple calls to <debug>, you can decorate the
log
message with one or both of the optional "prefix" and "postfix"
attributes:

Page 41

<debug postfix="]" prefix="AFTER TEXT REPLACE ["/>

If the simple String node "data contents" were passed through the
default
<debug/> operation, it would log the same String, "data
contents". However, with
the pre/postfix example above, the debugger
would log the String "AFTER TEXT
REPLACE [data contents]".

To send a subset of input data nodes to the log, you can wrap the
<debug>
operator inside a <group> operator, like this:

<group class="java.lang.String">

 <debug/>

</group>

This operation would log only data nodes which were String objects,
passing over
any Integer, Datum, or other class types without logging
them.

The <debug> operator can also be used to send static log messages
during a
transform. Whenever you set the "message" attribute, the
debug logger will write
out the static log text exactly once, and will
not log node data. The "log-info"
attribute works in this case, but
the "prefix" and "postfix" attributes are
ignored, since they are
static text too.

Common uses for static logging are to add logging checkpoints to the
transform
process, and to delimit node dumps. The example below logs
the string "BEFORE",
then logs each node, then logs the string
"AFTER":

<debug log-info="trace" message="BEFORE"/>

<debug log-info="trace"/>

<debug log-info="trace" message="AFTER"/>

Section 3.19 - Custom Transforms

Sometimes you need to perform a transformation not easily covered by
the standard
Transform XML specification. Catalan provides an easy
way to add your custom
processors to the Transform XML specification,
or to create your own Transform
XML mapping from the ground up.

The core Transform XML mapping, from XML to Java processor classes,
resides in
the ProcessorRegistry class. The registry builds its
default mapping from a
simple XML document in the default-registry.xml
file in the Catalan jar file.
The file looks like this (for clarity,
only the first three entries are
duplicated here):

Page 42

<registry>

 <bean-to-xml class="org.writersforge.catalan.transform.BeanToXml"/>

 <build-xml class="org.writersforge.catalan.transform.ObjectToDatum"/>

 <concat class="org.writersforge.catalan.transform.Concatenator"/>

 ...

</registry>

Each entry in the registry maps an XML element to a Java class. For
example, the
first entry above tells the registry to invoke the
BeanToXml processor class
every time it sees a <bean-to-xml> operation
in the Transform XML.

The default ProcessorRegistry constructor loads the
default-registry.xml mapping:

public ProcessorRegistry()

You can create an entire mapping from scratch, for example to rename
the bundled
Catalan processors or to create a mapping from your own
custom processors. Load
your XML mapping into a Datum tree and pass
it to the alternate constructor:

public ProcessorRegistry (Datum baseMap)

Once the initial registry exists, you can add further layers of
mappings with the
two "add" methods:

public void addOverride (Datum map)

public void addFallback (Datum map)

Both of these methods add <registry> mappings just like the original
one. If
none of the new mappings contain duplicate elements of any of
the old mappings,
the two methods are identical. All mappings are
merged into a single registry.
However, if a conflict arises between
XML element names, the addOverride() method
will replace the existing
mappings with its own; the unobtrusive addFallback()
method will
discard the new ones in favor of the old ones.

The ProcessorRegistry class also contains two other methods for
performing
mapping operations, but they are primarily used internally
by the Transformer
class:

public Class lookup (String opName)

public NodeProcessor createProcessor (Datum xmlOp)

Let's say you have a custom processor that you want to register, so
you can use
it in alongside the standard Transform XML. First, create
the registry, then

Page 43

load the registry XML into it with the
addOverride() method:

String xml =

 "<registry>" +

 "<my-proc class='org.mystuff.MyProcessor'/>" +

 "</registry>";

Datum myMap = DatumReader.fromXml(xml);

ProcessorRegistry registry = new ProcessorRegistry();

registry.addOverride(myMap);

The registry now contains the full default mapping, plus your custom
<my-proc>
mapping. The next step is to hook up the Transformer to the
registry. You must
do this when you initially create the Transformer
object; the Transformer only
reads the registry when it is first
instantiated, so if you make changes in the
registry object after
creating your Transformer, those changes will be ignored.

The constructors for Transformer look like this:

public Transformer (Datum transform)

public Transformer (Datum transform, ProcessorRegistry registry)

The first one loads the Transform XML using the default registry with
no custom
additions. To add custom mappings, you must use the second
constructor:

Transformer transformer = new Transformer (transformXml, registry);

All mapped classes in the registry must somehow extend the
BaseNodeProcessor
class. Any classes that do not properly extend this
base class will be ignored
by the ProcessorRegistry, and thus the
Transformer. All processor classes used
by a single Transform XML
document are created and initialized when the
Transformer object is
created. Each Transform XML operation is passed in
entirety to one of
the processor's constructors; thus, the processor can use any
XML
attributes and child elements in the transform operation to
initialize
itself.

The ProcessorRegistry is responsible for creating each processor from
its
corresponding fragment of Transform XML. It dynamically searches
for
constructors in the following order:

1) public MyProc (Datum, ProcessorRegistry)

2) public MyProc (Datum)

3) public MyProc ()

Page 44

If the processor has a constructor with a Datum and ProcessorRegistry
parameter,
it will pass the Transform XML into the first parameter and
itself into the
second parameter. This constructor is primarily used
for the <group> and
<xml-select> operations, to provide a callback
path to the registry for
instantiating embedded operations.

Most processors will implement one of the other constructors. The
second
constructor takes only the Transform XML fragment. If a
processor doesn't need
any initialization data, it can simply rely on
the default constructor.

Page 45

